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Abstract

A new class of isogonal polyhedra is considered. Polyhedra are constructed using a combination of
reflections in several symmetry planes of a given symmetry group. The procedure is a generalization of
a Wythoff construction used for building uniform polyhedra. Every valid combination of symmetry
planes generates an entire family of isogonal polyhedra. There are seven families with tetrahedral
symmetry, 284 with octahedral symmetry, and a few million with icosahedral symmetry.

1 Introduction

Polyhedra have always been some of the most visually appealing geometrical objects. They have
fascinated people from ancient times when the simplest polyhedra - the tetrahedron, cube, octahedron,
dodecahedron, and icosahedron ( the platonic solids) were known. Most people's knowledge of polyhedra
is usually limited to above mentioned five figures. Twentieth century mathematics has not devoted much
attention to polyhedra. Perhaps that is because the subject is very old and too simple from the point of
view of modern mathematics. However, polyhedra are extremely interesting objects to investigate and
there are many unsolved problems.

One of most most notable polyhedra-related mathematical works of recent times is the paper by
Coxeter et al [2], which enumerates all 75 of the so called "uniform" polyhedra. These polyhedra have
symmetrically equivalent vertices and regular faces. The requirement of regular faces limits the number
of possible figures significantly. A much broader set of shapes form polyhedra with symmetrically
equivalent vertices - isogonal polyhedra. Actually, there are infinitely many isogonal polyhedra. Not
much is published about isogonal polyhedra: [1] describes so called "noble" polyhedra - polyhedra with
equivalent vertices and faces, and [3] gives several interesting new classes of isogonal prismatoids,
which are generalizations of prisms and antiprisms. No classification of general isogonal polyhedra has
so far been published.

In this paper, we will attempt to describe a subset of isogonal polyhedra which we call
kaleidoscopical polyhedra. These polyhedra may be constructed using a procedure which is similar in
some aspects to the process of creating images in a kaleidoscope. We have also attempted computer
assisted enumerations of all possible kaleidoscopical polyhedra.

2 Kaleidoscopical polyhedra construction

We will limit our consideration to the following three groups of symmetry: full symmetry of the
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tetrahedron (Td), octahedron (Oh) and icosahedron (Ih). These are the only point symmetry groups in
addition to the simpler dihedral group symmetry of the prism, which consist only of reflections in several
symmetry planes and compositions of those reflections. The tetrahedral group Td has six symmetry
planes, the octahedral group Oh has nine, and the icosahedral group Ih has fifteen symmetry planes.
Isogonal polyhedra should have all vertices equivalent under the operation of a given symmetry group.
Therefore all vertices of a polyhedron should lie on a sphere with the center at the origin. The
intersection of the symmetry planes with this sphere will be a great circle on this sphere. All such
intersections form a grid of great circles. Fig.1a-c show these grids for each symmetry group along with
their corresponding platonic solids with that symmetry.

Next we choose a "kaleidoscope" - an ordered circular sequence of symmetry planes (i.e. mirrors):
[P1, P2, ..., PN]. Let's call N the order of the isogonal polyhedron. We call the sequence circular, because
we assume it to have no beginning and no end, in that the element following element  PN is element P1

again and any circular transposition of a given sequence is considered to be the same sequence. This
kaleidoscope resembles the typical real kaleidoscope with the difference that real kaleidoscope has non-
penetrating one sided mirrors. Our “virtual” kaleidoscope has ideal, two sided mirrors that can  penetrate
each other.

We can visualize such a kaleidoscope as a spherical polygon on the sphere, whose sides are pieces
of great circles. Fig.2 shows an example of such a spherical polygon, which corresponds to kaleidoscope
consisting of four mirrors. Sequential mirrors of the kaleidoscope intersects each other along the
symmetry axis of the symmetry group. The vertices of the spherical polygon are intersections of these
symmetry axes with the sphere.

Let's choose an arbitrary point on the sphere (a generator vertex), which will be one of the
equivalent vertices of the kaleidoscopical polyhedron (Fig. 3). Every sequential pair of kaleidoscope
mirrors is used to form one face adjacent to the generator vertex. The vertices of that face are formed by
reflections of the generator vertex in symmetry planes. This is the same effect that would happen if we
placed a small object representing a vertex inside a wedge formed by two mirrors. We will see the object
itself and several of its images. If the dihedral angle between mirrors is rational: (m/n)π, then we will
have 2*n images. It will not be possible to see all images of the object in the real kaleidoscope because
some images will be hidden behind the kaleidoscope wedge, however we will always have all the vertices
in our ideal kaleidoscope.

Fig.4a-d shows the faces formed by the generator vertex from each of four pairs of mirrors of our
kaleidoscope. Every sequential pair of faces share a common edge. Each edge joins the generator vertex
with its reflection in each mirror common to both pairs of mirrors used to make each face. Every edge
adjacent to the generator vertex has exactly two adjacent faces. Thus there are N edges and N faces
adjacent to the generator vertex. Fig.5 shows all four faces adjacent to a generator vertex.

The last step in building the isogonal kaleidoscopical polyhedron is to apply all symmetry
transformations of the symmetry group to the faces adjacent to the generator vertex. The beautiful
properties of symmetry will cause the resulting shape be a polyhedron with all vertices having N adjacent
faces and N adjacent edges. All vertices will be equivalent to the generator vertex. Fig 6. show such a
polyhedron made with a 4-mirrored kaleidoscope.

3 Kaleidoscopical polyhedra family

It is important to note that the kaleidoscopical construction described above has one arbitrary parameter -
the position of the generator vertex. Every new position of this vertex will create a new polyhedron. All
polyhedra constructed using one kaleidoscope and various generator vertex locations will have some
common properties. In particular, they will all have the same number of faces, vertices and edges.
Moreover, the type of all faces remains the same though the shape of the faces may be very different.



Fig.7 shows the metamorphoses of two different face types presented in a 4-mirrored kaleidoscope.
These drawings are similar to those found in [4].

The metamorphosis of the whole polyhedron is much more complex. Fig.8 attempts to show the
metamorphosis that happens when the generator vertex moves along a trajectory on the spherical surface.
It is difficult to present in a drawing the real beauty of this polyhedral metamorphosis. It is like trying to
show several photos from a real kaleidoscope to give a feeling of operating a real kaleidoscope.
Unfortunately it is impossible to make a physical model of this polyhedral transformation. However a
computer modeling can give good representation of the metamorphosis. We have generated several
thousand interactive computer models of kaleidoscopical polyhedra families which can be seen on the
Web[5] using a standard web browser with a VRML plug-in. These computer models allow interactive
real time selection and movement of the generator vertex as well as free rotation of the resulting
polyhedron itself.

4 Enumeration of kaleidoscopical polyhedra families

How many kaleidoscopical polyhedra families are there? Not every combination of symmetry planes
gives a kaleidoscope which can produce a valid polyhedron. The limitations are: a) Mirrors may not be
coincident. This prevents the creation of polyhedra with coincident edges.  b) The symmetry axes along
which sequential mirrors of a kaleidoscope intersect must be unique. This prevents the creation of
polyhedra with coplanar faces.

Not all kaleidoscopes will produce unique families. If there exists a symmetry transformation which
maps the mirrors of one kaleidoscope into mirrors of another, the corresponding polyhedral families will
be identical. Therefore all equivalent kaleidoscopes can be represented by one arbitrary selected
(canonical) kaleidoscope.

We have conducted a brute force computer search for all possible canonical kaleidoscopes, however
the search is not complete. The Table 1 shows the number of families for each symmetry group being
investigated. Kaleidoscope with tetrahedral symmetry may have up to 6 mirrors, with octahedral
symmetry - up to 9 and with icosahedral symmetry up to 15. Question marks in some cells of icosahedral
symmetry mean that the algorithm currently used failed to give results in a reasonable time, however, we
believe that the nearly one million kaleidoscopes already enumerated give enough material to play with
and enjoy. The list of all kaleidoscopical polyhedra is available on the web [5].

5 Conclusion

We have presented the  special class of isogonal polyhedra families which may be constructed using a
special kaleidoscopical construction. The number of such families is quite large, especially for
icosahedral symmetry, and the number of arbitrary isogonal families is significantly larger. Our
preliminary attempt to enumerate these families found at least several thousand species with tetrahedral
symmetry Td. Only seven of these species belongs to kaleidoscopical class, described in this paper.
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      Table 1. The count of kaleidoscopical polyhedra families.

Symmetry
Order Ih Oh Td

3 11 7 2
4 42 9 2
5 285 26 2
6 1579 43 1
7 9354 80
8 45471 72
9 200324 47

10 622944
11 ?
12 ?
13 ?
14 ?
15 ?


