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Region on the right looks like two components region, however it is an infinite
cheese wedge with a spherical hole.

Inversive Geometry
Convenient container to work with 3 dimensional hyperbolic tilings is 3D Inversive (or Moebius)
Geometry. It can contain upper half space model and ball model of .

Geometric transformations are reflections in planes and inversions in spheres (splanes) and arbitrary
compositions.

Each splane divide space into two sets interior and exterior. Specific orientation is assigned to
splanes by direction of normal that points to the exterior of the splane.

Regions are defined as intersection of interiors of splanes.



Plane { , } is defined via  - vector of
external normal and  - distance of plane to
origin .

Reflection in plane  maps point  into point
( )
( ) = 2 , .

Where ,  is scalar product.

Signed distance of point  to to plane  is
( , ) = ,

Here we have mapped interior region of the
plane (on the right) on the exterior region on
the left.

Reflection in planes



Sphere { , } is defined via center  and
signed radius .

Positive radius means interior of splane  is
region inside of the ball.

Negative radius means interior of splane is
region outside of the ball.

Inversion in sphere  maps point  into point
( )

( ) = +
| |

( )

Signed distance of point  to to sphere  is
( , ) = ( )(| | | |)

Inversion in spheres



Inversion is sphere becomes reflection in
plane when radius of sphere tends to infinity.

Planes are spheres
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Tiling can be constructed in several steps

Build Fundamental Domain - region
bounded by finite number of splanes ( , 
, , )

Dihedral angles between splanes are

integral fraction of : =

Build symmetry group generated by
reflections in splanes

How to construct a tiling



Tiling can be constructed in several steps

Build Fundamental Domain - region
bounded by finite number of splanes ( , 
, , )

Dihedral angles between splanes are

integral fraction of : =

Build symmetry group generated by
reflections in splanes

Fill space by copies of Fundamental
Domain transformed by all transformations
of the group.

How to construct a tiling



Straightforward appoach - apply each of
transformation of the group to the
fundamental domain.

Troubles

Groups are usually infinite

Fundamental Domain often is infinite

Transformations of the group may act on
the fundamental domain in rather complex
way, mapping finite regions into infinity.

How to draw the tiling



Straightforward appoach - apply each of
transformation of the group to the
fundamental domain.

Troubles

Groups are usually infinite

Fundamental Domain often is infinite

Transformations of the group may act on
the fundamental domain in rather complex
way, mapping finite regions into infinity.

Different apporach is needed!

How to draw the tiling



Different approach - draw only pixels which
we can see.

For each visible pixel on the screen find
transformation which maps it to the
corresponding pixel in the fundamental
domain.

Color the pixel with color of the corresponding
pixel in the fundamentral domain.

Reverse Pixels Mapping



Check the point location relative to each
generator.

Reflect point in first found generator which
has point in its exterior

Search of Reverse Mapping
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Check the point location relative to each
generator.

Reflect point in first found generator which
has point in its exterior

Continue the process until the point is
inside of each generator.

Search of Reverse Mapping



The composition of reflections gives the
required transformation

Search of Reverse Mapping



Arbitrary pattern can be placed inside of the
fundamental domain

Coloring the Pixels



Arbitrary pattern can be placed inside of the
fundamental domain

The pattern is reflected to the whole visible
space

The calculations for each pixel are
independent and can be run on GPU in
paralel in real time

Coloring the Pixels



Another way to color the pixel is coset
coloring.

Here pixels are assigned different color
according to coset of the orientation
preserving subgroup of index 2.

In this simplest case coset coloring can be
obtained by counting number of reflections
needed to map pixel to fundamental domain
and assigning one color if count is even and
another color if count is odd.

Coset coloring



Color count equals to the index of subgroup.

Coset coloring



Color count equals to the index of subgroup.

The index of subgroup of infinite group can be
arbitrary large.

This is coset coloring with 10 colors

Coset coloring



Simplest hyperbolic tilings are tiling with
tetrahedra.

Lets start with specific example.

Hyperbolic tetrahedron with all finite vertices.

It is convenient to display tetrahedra using
Coxeter diagram.

Each plane is shown as small circle.

For each pair of faces ( , ) with dihedral angle

=  the corresponding pair of circles ,  is

connected with 2  lines.

Building Hyperbolic Tiling



Let's work in the upper half space model of 
. Horizon of  lies in the xy-plane ( = 0)

Lets place planes  and  orthogonal to Z
axis and orthogonal to each other.

Building Tetrahedron 1
-->



Plane  is a sphere centered at the horizon.

Dihedral angles of its intersections with planes

 and  are =
3

 and =
3

.

Building Tetrahedron 2



Tiling generated by splanes .

It is stereographic projection of the spherical
tiling 332.

Building Tetrahedron 3



Fourth sphere  with dihedral angles =
4

=
3

, =
2

 finishes the hyperbolic

tetrahedron.

Building Tetrahedron 4



Here is the tiling.

What is going on?

Tiling by tetrahedra



This is the tiling.

What is going on?

We are looking in the wrong place!

Plane = 0 is the horizon (infinity) of .

Tiles become infinitely small at the horizon.

The visible noise is due to finite precision of
calculation.

Tiling by tetrahedra



"Right" places to look at the space tiling are
hyperbolic planes.

One kind of hyperbolic planes in the upper
half space model are planes orthogonal to the
horizon.

The image looks similar to 2D tiling of
hyperbolic plane in the upper half plane model
of .

However the polygons are not 2D tiles, but
odd shaped slices of 3D tiles by hyperbolic
plane.

Tiling in hyperbolic planes



Another type of hyperbolic planes are half
spheres centered at the horizon (image
below). The planes can be flattened by
stereographic projection.

The flattened tiling (on the left) looks similar to
the 2D tilings in the Poincare circle model of

.

Tiling in hyperbolic planes



"Problems" of hyperbolic tilings
The main feature of hyperbolic tilings visualization is high range of visual scale.

In the circle model of  we have few regular sized tiles near the center. Tiles shrink rapidly as we
approach the horizon.

Upper half plane model  has similar behavior. Tiles shrink rapidly as we approach the horizon and
stretch rapidly as we move up.



Introducing horospheres
Let's "flatten" the hyperbolic plane.



Horosphere (2)
Let's "flatten" the hyperbolic plane.



Horosphere (3)
Let's "flatten" the hyperbolic plane.



Horosphere (4)
We got horosphere.



Horosphere (5)
Zooming out the camera.



Horosphere (6)
Zooming out the camera.



Horosphere (7)
Zooming out the camera.



Horosphere (8)
Zooming out the camera. Animaton https://youtu.be/u1Lp9NS98E0

https://youtu.be/u1Lp9NS98E0


There are different motion we can perform
with horospere

Straight hyperbolic translation. Animaton
https://youtu.be/PKauqA_Qp9Q

Horosphere Motion

https://youtu.be/PKauqA_Qp9Q


There are different motion we can perform
with horospere

Hyperbolic rotation around hyperbolic straight
line.
Animaton 1.
https://youtu.be/PhcbmsTYc-0
animaton 2.
https://youtu.be/rSEzGtp56vI

Horosphere Motion 2

https://youtu.be/PhcbmsTYc-0
https://youtu.be/rSEzGtp56vI


There are different motion we can perform
with horospere

Moving tiling past horosphere.

Similar to horosphere hyperbolic translation.

The difference is that scale of the tiling remain
the same.

Animation.
https://youtu.be/gGvlkomzvAg

Horosphere Motion 3

https://youtu.be/gGvlkomzvAg


There are 32 compact hyperbolic tetrahedra
with kaleidoscopic angles.

There is infinite number of non compact
tetrahedra (tetrahedra with vertices beyond
infinity).

There is infinite number of more complex
polyhedra.

A lot of possibilities for fun.

Different Hyperbolic Tetrahedra



This tetrahedron has icosahedral vertex 532
and ideal vertex 333.

Animation.
https://youtu.be/AVnNs3dU3-c

Tetrahedron example 1

https://youtu.be/AVnNs3dU3-c


Tetrahedron has ideal vertex 333.

Horosphere is moving away from that vertex.

Animation.
https://youtu.be/F1cDHtS6oeE

Tetrahedron example 2

https://youtu.be/F1cDHtS6oeE


Animation 1
https://youtu.be/tR_IFchXvo8

Animation 2
https://youtu.be/-vzEcbNrFnk

Other Cross Sections
Slicing euclidean tiling wih plane also produces interesting results

https://youtu.be/tR_IFchXvo8
https://youtu.be/-vzEcbNrFnk


VRML model. VRML model.

Spherical Cross Sections



3D printing involves creation of spherical color
map and applying it to a shape (sphere).

The modeling was done in ShapeJS - online
tool for making 3d printable models via script.

The 3D printing was done by Shapeways.

3D Printing



WebGL is web browser API which allow web
pages run graphics program directly on users
GPU (graphics card).

WebGL example

Real Time Rendering with WebGL



Online adress of the talk
http://bulatov.org/math/180110/

End

http://bulatov.org/math/180110/

